The following interview was conducted with Jeffrey S. Vitter (JV), Dean of the College of Science, for the Purdue University Oral History Project. It took place on Tuesday, July 29, 2008 in Stewart Center. The interviewer is Katherine Markee (KM), the oral history librarian.

KM: Welcome. Tell us a little about where you were born and your parents and early years.

JV: Sure, thank you Katherine. It’s a pleasure to be here. I was born and raised in New Orleans, so I am a real true southerner from the deep south. Although, most people don’t really realize that because a New Orleans accent is really best described as a soft Brooklyn accent. It’s very different from if you go sixty miles away in any direction in Louisiana, then you get more of a southern accent. So, I very much pride myself as a southerner. It is part of my identity. My family has actually been in New Orleans for many, many generations. They came in the mid 1800s. Genealogy is one of my passions, so I’ve been very interested in that. My dad and my mom are both recently passed away. My dad was for a long time Chief Engineer for Chevron Oil. So, he brought in the scientific and technical appreciation to me. My mom was probably the guiding force in my life, she was just a great role model. She was extremely compassionate and a dedicated person, and she did quite a lot for me. My family is still centered in New Orleans. All my brothers live there, and a lot of cousins, and really all across.

KM: Tell us a little about high school, where you went to high school. What activities and things?
JV: New Orleans is a very Catholic city, so I went through parochial school, and then Christian Brothers in grade school and De La Salle High School, which was also run by the Christian Brothers. They were great schools, they really gave me a lot of good foundation. I think that’s a lot of what I base my studies in college on. Just getting that initial excitement and grounding in science and math, which really propelled me further.

KM: Right. Were there any particular activities? What about athletics in high school? How large of a school was it?

JV: De La Salle was about, I think, twelve hundred students, so not a real big high school by standards here. I played a lot in grade school and early high school. I played baseball and I played some golf, but then in high school I kind of dropped that and just got more involved in activities like journalism, debate team, and various service organizations. I was primarily involved in that, but I still play a lot of sports and it’s a lot of fun.

KM: Let’s talk a little bit about college. How did you select? I understand you went to Notre Dame.

JV: Yes, I don’t usually say that too loud around here, unless explicitly asked. Probably the biggest challenge I had coming to Purdue was going to the Purdue vs. Notre Dame football games. The good thing is that all six years that I have been here the game has been pretty much of a slaughter, one way or the other. So, I haven’t really had to go down to the wire. That would’ve been a little tough. My dad went to Notre Dame, he graduated in ’35. So, he started a couple months
after Knute Rockne died in the plane crash. So, we go back a long way. My two oldest brothers went there, two of my nephews, two of my kids. My two sisters couldn’t go because it was all-male at the time. So, just about everybody who could go, elected to go there. My brother David decided not to go, but he went to Harvard and became a politician, so I don’t know what that means, but Notre Dame is really a big part of our life. In fact, my son Scott is living in the same dorm I lived in and my dad lived in in the 30s.

KM: What sort of program did you take there? Tell us a little bit about campus life when you were there and when you graduated.

JV: Oh, I really enjoyed it. They don’t have fraternities at Notre Dame; the hall systems kind of take the place of that. It is very residential-focused; almost everyone lives on campus until possibly senior year. You develop a lot of close friendships, so I really, really enjoyed that. I was a math major and because I had taken a lot of math in high school, I was essentially in the same class as the sophomore majors, and I got to know a lot of faculty because my oldest brother, who was a big influence on my academic choice. Al is a math professor at Tulane. His Princeton grad school housemate was on the faculty at Notre Dame; he became my advisor. I knew a lot of the math professors too, and I had some world famous teachers my very first year like Yozo Matsushima, and then later Wilhelm Stoll, who were just really fabulous mathematicians, and I got to know them personally because they knew my brother. It was a lot of fun.

KM: Then when did you graduate from Notre Dame? And then tell us after…
JV: I graduated 1977 from Notre Dame and then I went to Stanford in Computer Science. I had made the decision toward the end of my junior year that...I mean I loved mathematics, I essentially went through the pure math sequence at Notre Dame. I took the graduate courses, but I wanted to do something that was more, not just theoretical, which brings in all the elegance and beauty of mathematics, but also apply toward real pressing problems, and that kind of drew me into computer science. So I took some courses my senior year and got interested in that. That's why I ended up going to grad school at Stanford.

KM: Ok. Then where did you do your graduate work after that?

JV: Well, I got my PhD at Stanford and I had the opportunity to work with the person who's essentially considered the founder of the field, in the sense of giving computer science legitimacy to be considered a full academic discipline, and that's Don Knuth, who really wrote the books that are kind of considered the bible of computer science. I was very fortunate to almost stumble into working with him, because...

KM: Was he at Stanford?

JV: He was at Stanford, and people generally were afraid to go and even ask if he would be their advisor. It turned out I worked on an open problem, and I was able to find a solution. I showed it to him, and asked if it might be worth writing a short paper about it. He said, "Well, this should be an important part of a thesis, and you should do this and this." Essentially he worked out my whole plan. He basically laid out that I should be... this was at the end of my first year... and he
said by the end of your third year you should be finished. I stuck to that and
graduated in 1980. I remember going through my thesis with him, and he was
giving comments, and he said really nice things, and then at the end he said,
“Well, you know you went through pretty quickly. You’re graduating now in three
years. Why’d you go through so quickly?” And I was just dumbfounded because
he had just told me to do that two years earlier, and I wasn’t about to go against
his advice. It was kind of funny, but he was a great influence on me. He’s a
tremendous human being in many ways. Of course, a world famous computer
science professor.

KM: Right. Now tell us about the career path before you came to Purdue.

JV: Well, I started at Brown University as an assistant professor, 24 years old. So, I
was pretty young.

KM: Did you have family at that time too?

JV: I did not. I had met my wife at Stanford and then we got married two years later,
then she moved out to Rhode Island at that time. That was probably the biggest
thing to me, meeting her and then getting married and eventually starting a
family. All my kids were born in Providence, so that’s really a special place to me.
Brown is where I went through the faculty ranks. I was tenured at 29, and I got
full professor at 32. It was a lot of work but, it’s a great place. Brown is a
wonderful university. It really brought home to me the incredible value of
teaching, because Brown emphasizes not just research, but it’s very much
focused on teaching. For example, my very first year as I taught first semester I
was also working on the design of my second semester course, which was a brand new huge programming course that would have between two and three hundred students in it, and I had a team of TAs to help me design it, with two head TAs, one of whom was Randy Pausch, who just unfortunately in the past week passed away from pancreatic cancer.

KM: He went to Carnegie Mellon.

JV: Carnegie Mellon, and he was just a tremendous individual. He was profiled by Dianne Sawyer on an entire show… is it “Primetime” or “Nightline”? On Oprah, of course he made all the national news. His book and talk, *The Last Lecture*, has been seen by millions of people on YouTube. It was just a phenomenal environment. He was an undergraduate at the time. Undergraduates were extremely involved in the department; they played a major role. It was that kind of environment that really brought home to me the importance of teaching, and how much fun it can be at the same time.

KM: Before you came to Purdue, after you left Brown…

JV: Yes, so I was at Brown for twelve and a half years. I went through the ranks, and had a great sabbatical in France and at MSRI at Berkeley. Then, in the early nineties I had the opportunity… people contacted me at Duke for department chairmanship. I knew a lot of people at Duke from just professional connections, just outstanding people. But, it was the department that was also known in computer science circles for just not getting along and having difficulty in creating a vision that people bought into. It was a very old-fashion-run department, top-
down. There was not involvement. So, it was an opportunity to really make a difference with some very good people already there, and elevate it into a really great department. That’s what I set out to do, and it was a lot of work, but it really got me interested in academic administration. It was really about creating a new culture. We instituted weekly faculty meetings during Wednesday lunch. I figured everyone had to eat lunch, so it was a good opportunity to do that. What was really striking when I interviewed there was that... I tell people part of the reason I just went to interview is, I really wanted to see if all the stories I heard could possibly be true, and I actually learned some new ones that I’m not going to talk about. What was amazing was, everyone really wanted the department to succeed. There were no personal animosities of any significance. It was just that people didn’t know how to make things happen. So, we created the inclusive culture with regular weekly meetings. Separately I met with all the junior faculty because they were petrified to say anything in faculty meetings. I met with them on a regular basis that whole first semester just to get them into the notion, not only are they supposed to participate, but they should be the drivers of the department. They are the young blood, the energy center. By the end of that first year we had a really dynamic strategic plan. It set very new directions. The department had previously been focused on very traditional and somewhat outdated areas. So, we had a modern focus. By the time we started hiring, which was a full year later after we had set this basic culture into place, it was phenomenal how successful things were. We got grad students involved in the hiring process in a major way. I think candidates were a little surprised, but also
really taken by the quality of grad students and their involvement. It made them think, “Well, here’s a place I want to go to because these are grad students I want to work with.” So, we hired our top three people that year. In fact, as department chair, I think we hired something like 14 or 15 faculty. Every single faculty member was a number one pick in his or her search, which is a phenomenal record that I had no idea we’d be able to do. As we went along it just kind of built and more and more people wanted to come to Duke. So, it’s a top-20 department now. It’s doing really well. Although, I have to say I’m pleased that having come to Purdue that Purdue has now jumped in front of both Duke and Brown in the rankings, but Duke is really a special place.

KM: I would say so. Let’s move on now. You came to Purdue in the College of Science; let’s talk a little bit about that. Let’s start with your responsibilities and challenges in the curriculum, if you’d like to share some things.

JV: Sure, well one of the early things…

KM: How’d you happen to hear about that position?

JV: Oh, well I knew people on the faculty here for a long time: Greg Frederickson, Susanne Hambrusch, Mike Atallah. The opportunity had come up, and I had decided at Duke that I really wanted to go further into academic administration because, in a sense computer science is not programming. Computer science is about finding solutions to problems, and that’s really what academic administration is. So, I decided at Duke that I wanted to go that route, and I even
went through the Fuqua executive MBA program to get a more foundational grounding in academic administration.

KM: That was at Duke right?

JV: Yes, that was at Duke. It was a top-3 executive MBA program at the time. It was just a wonderful experience. It opens up new perspectives and new ways of thinking. So, immediately after that the Purdue deanship became open and I was contacted for that and applied. I moved in September of 2000. My oldest daughter, Jillian, was just entering senior year, so my family stayed back in North Carolina, and I would commute more or less a couple weeks here and a couple weeks there for that first year. That was six years ago now.

KM: Time flies doesn’t it? Let’s talk about the school now. Let’s talk about some of your responsibilities and the strategic plan and curriculum.

JV: Yes, the curriculum. So, one of the immediate things I saw when I was here my first year was in discussions with the faculty council about the curriculum. People said, “Well, really students need to be doing this,” or “Here’s the current requirement, and let’s substitute this for that.” It became clear from the discussions that it was almost impossible to make a change in the curriculum because, first of all no one understood what it was even trying to do. It was this mishmash of just all kinds of different requirements and exceptions and substitutions that didn’t really give any particular coherent result. So, at the end of that first year I decided that it was time to just look afresh at what we were trying to do. We just asked the question, “What are our graduates supposed to
get out of this educational process?" We charged a task force on undergraduate education to look at that. It was actually an interesting process. It was a four-year process. By the end of that first year, actually we had to restart because we learned some things and put into place a better process that was more inclusive. We found that in the first process, we got a lot of good ideas, but it wasn’t necessarily engaging the whole college, and we wanted to make sure that happened. Once that was in place we asked the basic question, “What are we supposed to be providing our students?” We came up in each department, and also in the college discussions, with an amazing unanimity towards six basic outcomes. Almost every department, I think every department, had five of the six as their top outcomes. Those outcomes first of all started with depth of major, which was the fundamental one; in fact, it was the only one prior. Then, it included things like critical thinking, which involves certain lab experiences, computational thinking, statistical thinking, collaboration; knowing how to work together in teams, knowing how to communicate both orally and in writing, and then having some multidisciplinary experience, where you bring to bear on a problem different approaches because these big problems we face in society are too big to be solved by any one narrow discipline. People have to be used to looking at things from a more global perspective. Then, the sixth area was sort of a broader component that brings in issues of ethics, diversity, internationalization, global cultures and so forth. So, we were able to focus on six outcomes, and then we put everything else to the side and said, “This is what we want to do. Let’s figure out how do we design a curriculum; both courses and
experiences, so that we have options for each one of these six outcomes.” We have multiple paths for each outcome, they’re not all course-based; they could involve experiences like study abroad or doing research with a professor. That’s what the basis is for our curriculum. It was formally approved after a year of pilot in April of 2007. So, we’ve gone through now one full year. It’s very popular; it’s really an exciting accomplishment. There is no university curriculum at Purdue, so this is a substitute. In fact, I think it’s gotten so much attention that it has really resulted in the university strategic plan now calling for a university curriculum because there is a great interest in getting at some of these kinds of outcomes that we laid out.

KM: Sure. Ok, how about the strategic plan? You want to make a couple comments about that?

JV: Sure. That was the very first thing I started at Purdue coming in from Duke, where the focus involved a lot of planning, but really was about building a culture. Here, it was a very mature and highly ranked, highly regarded institution, with some great departments, wonderful faculty. The opportunity though, was to turn from the silo mentalities — that midwestern term, where every department or every college was really unto itself — into one where we could look at these big issues I talked about, these grand challenges that face society, such as finding new energy sources or making our environment sustainable or trying to use this explosion of information to our advantage without hampering our privacy. These big issues require cooperation among disciplines. So, at the time Martin Jischke
had put forward his university strategic plan, which called for an increase of 300 faculty slots. That was a great opportunity to target these growth areas in a way that was different from the past. In our college that meant, we were actually growing by 61 positions. So, that was over 20 percent of our size. We had gone through two years of hiring, so we targeted over 40 of the remaining positions toward multidisciplinary priorities. The question there was, “What are the priorities to be?” These were searches where we were not going to be doing department searches, but we were going to be looking at these college-wide, where the committees would be across the college and across the university for that matter. In addition, we might not even know beforehand where the faculty member was going to have as a home. In one case, we did search and membrane science one year, and we hired four faculty: two went into biology, one into chemistry, and one into physics. There were many joint appointments as well. So, we focused the entire year then on this issue of what should our priorities be? We asked each department to spend two months focusing on laying out where they needed to be in five or ten years. What are the big issues that drive them, and that they have the critical mass to build on? Then, we opened it up to the university to suggest to us priority areas. We got over 50 white papers submitted. We had three groups of faculty who independently went through the white papers and kind of weeded them down. We ended up with 15 that we asked the submitters to flesh out and put on the web. Then, we had an all-day retreat on Saturday, March 1, 2003, where we had 140 faculty, plus staff as well. That was over half of the entire faculty at the time. So, they spent all day
Saturday at a retreat talking about these priorities. So, that’s an indication that people really said that this is important, and it was the first retreat the college had ever had. It was an opportunity for people to hear about things being done that they had no idea about; it was really a great learning experience. So, we had the 15 groups present in small groups to the rest of the faculty. The faculty were divided into small groups. By the end of the morning after this round robin set of discussions, we had a straw vote that pretty clearly indicated what were clear priorities for the college versus more departmentally focused ones. We spent the whole afternoon in the large group bringing everyone together to talk about some of the in-between areas. One area that came to the fore in this process was science education research as a focus area. It’s a very non-traditional one. It’s not condensed matter nanoscience. It’s not computational science. It’s actually about how you teach science. So, what are the pedagogies to use, how do you assess whether you’re successful and what are the technologies that help you communicate more effectively? It’s a very non-traditional area. It’s an area some faculty frankly did not think was worthy of hiring faculty to do, but what came out in the afternoon discussion was just a passionate majority of faculty who realized this is an incredible importance to the country, our whole future depends on it. We have a critical mass already; we even have a distinguished professor in chemical education. So, it’s something we can build on. Moreover, the National Science Foundation spends a billion dollars a year on science education research, and we thought we might be able to help them spend their money more effectively. It was good the fact that we had that discussion, and the naysayers
were involved in it. They really heard that even though they don’t agree, there is this overwhelming passion and sentiment. They understood then why we went forward and made this one of our seven priorities… our so called COALESCE priorities. As a result, we formed a center called CRESME, which is the Center for Research and Engagement in Science and Math Education, joint with the College of Education. It’s a university center. That has really taken off. We have two co-directors, each of whom has joint appointments in the two colleges; one is primary in the College of Science and one’s primarily in the College of Education. That center has helped bring in the big statewide funding in K–12 education, called ISTEM. Purdue is the host site of this statewide partnership. So, we’re really poised to be a national leader. We have major state funding. We’ve gotten important national funding. We’re looking at some really big center proposals. It’s very exciting because it’s just so critical for the future of our country. I just think so highly of this area because I’m so proud to be an American. We’re the leaders of the world in culture and society and technology and the economy, and it’s all because of innovation. We are the leaders of innovation in the world. If you look back at what caused that innovation, you know, today in the last, say, 15 years, the great majority of our economic growth has come from information technology. The internet is a major driver. Well, who created the internet? It wasn’t created in 1995 or 2000. It wasn’t created by Al Gore either. It was created decades ago. Its fundamental research that was done thirty, forty years ago, that is now the driver of our economy. So, that means that what our children and grandchildren will be experiencing will be based on what we do now. That’s
why research is so, so important. That’s why we have to get students to major in science. That’s why science education is so important. That’s a really fundamental area. That means that research funding is important at the national level. You have to get students into the pipeline. You have to create pathways for students to get excited about going into the so-called STEM fields — science, technology, engineering, and mathematics — because that’s the whole future of our country.

KM: That’s right. Then, talk a little about your Multicultural Science Program and your K–12 outreach.

JV: Well, they tie in very well because we have a dearth of people going into these areas now. In fact, that’s endangering our future prosperity. When you look at it, women and minorities especially are not represented in the sciences and engineering. One of our challenges, or really opportunities, is to greatly increase the percentage because that’s a way of significantly boosting how many students will be graduating in those fields. So, our Diversity Office. The very first thing I did at Purdue was to reorganize the Dean’s Office, to make our associate deans have focused responsibility so that they could be more proactive in looking out to what they needed to be doing, and still allow the dialogue among the deans on issues that cross over to different areas. We formed an Office of Diversity in the process that brought together our Women in Science programs and our Multicultural Student Programs so that we would have an opportunity to share a lot of the same programming and support that is common to both. In fact, our
diversity director became the university coordinator for the diversity forums that are run for faculty and staff. I remember in my first year at Purdue, I went through the forums. It was a two-and-a-half-day workshop, and what impressed me from the recent alums, the minority alums who were a part of it, was their frustration from when they were students at Purdue about how they felt disenfranchised and marginalized. Often, it was their very first semester at Purdue when they would be in a group setting, whether it’s a lab group or some other group setting in the course, and they just felt that their views were not taken seriously. They would pipe up and say something, but it seemed like the other group members were ignoring them, not maliciously, but in many cases those kids had no experience in a diverse environment. So, I immediately asked our group to start looking into what can we do to make a difference at the freshmen level to orient them around these perspectives. And we formed a program called LEAD, which is a peer-group mentored process, really a training program for freshmen, so it’s run by other students. It takes place in the dorms, where 80 percent of the freshmen live. We got the buy-in from all the other colleges at Purdue, the Office of Admissions, student recruitment, and we did a pilot. It was very successful and then it was taken over by the university, and it has grown. It has become part of Boiler Gold Rush. So, it makes a real difference. We simply have to boost the number of people in the sciences, and it’s a real national tragedy to have underrepresented groups who don’t have those opportunities. K–12 Outreach really has very similar goals. It’s to get kids in middle and high school excited about science and to help work with teachers to do so. I would say, in the last
fifteen years or since at least the early nineties, our K–12 group, which is really the best I’ve seen anywhere, I believe we’ve been in front of something like 600,000 students. We’ve made 2,500 classroom visits. But, the biggest impact is through the teachers. We’ve had programs that have involved a total of 5,000 teachers.

KM: That’s key.

JV: Yes, and teaching them about new approaches, especially ones that are outcome-based. The particular program that we advocate is called SSSI, and we bring it out to some of our targeted school districts, to kind of help build awareness in the teachers how they can be most effective in getting the material across in a way that encourages inquiry, because that’s the best way for student to learn, where they’re discovering, not just being told. So, we do a lot of programs for teachers, and our K–12 group is a key part of the ISTEM Initiative. In fact, our K–12 director is the executive director of ISTEM. So, they play a major role there.

KM: Well, that’s kind of nice then. The healthcare engineering? Tell us a little bit about that for the researchers so they can benefit by that.

JV: That’s an area that is also very, very important. It ties in very closely to our information security group, which is the best in the world at Purdue, because information is at the heart of healthcare and how you manage healthcare, and privacy is of utmost importance. So, on my dean’s leadership council one of our members was Scott Serota, who was president and CEO of Blue Cross Blue
Shield. He’s one of our alums, and during a conversation he had this great idea of, “Well, wouldn’t it be great if we got some national, international leaders in healthcare to just come together and look at what should our healthcare system look like?” So, throw our current system, or whatever you call it, out and just create a new one from scratch. What should that look like for our next generation? So, we did that. Over the course of the next year we designed a summit. We call it our CEO Healthcare Summit. We have 24 of the national leaders, thought leaders from provider organizations, insurance companies, doctor organizations, hospitals, technology manufacturers, policy organizations, and just amazingly high-powered people. Absolutely no media or publicity, so there was no grand standing or posturing to the public. They actually just got together, worked in small groups, and came out with a report that has amazing unanimity around three basic fundamental notions. One is some basic universal coverage for everyone, basic coverage that allows voluntary coverage beyond that, up to the person. Secondly is it’s focused on informed consumerism, allowing people to see what’s involved in their healthcare so that they can make choices. They can see the cost, they can determine what’s best for them, and they can therefore make healthcare as effective as possible. Then third is personalized medicine and continuum of care, which is really getting at these new technologies. So, it was a very influential summit. The report I think really had some good things to say and has spawned new research projects since then.
KM: Sounds good. That science laureate program. That started something new on your watch.

JV: Yes, the Science Journalism Laureate Program is entering its third year now. We started it in the College of Science in 2006. It's a program really designed to honor science and technology journalists and communicators, who just play a very important role of educating the public. We're dealing with issues like climate change. We’re talking about evolution and intelligent design. Unless we really have information sent out, and not hearsay or pseudo-information, then we as a society are not going to be making good decisions. So, they play a very important role, and we wanted to honor them to kind of build up their profession because they’re a vanishing breed. There’s a tiny fraction of the original science sections in major newspapers that existed in the nineties that are still with us today. This is an idea that came from Moira Gunn on my Dean’s Leadership Council, and we took it and flew with it, and it’s a great success. It brings in some of the world’s leading journalists and communicators. We get to interact with them in town hall meetings. They've been rebroadcasted on *Tech Nation* on NPR… really insightful exchanges… and in the process they get to see a lot about Purdue and ideally write about Purdue, which is great for us

KM: Yes. So it's a win-win on both sides. You had some change in your facilities. You’ve got the new computer science and structural biology buildings. Can you make a couple comments on that?

JV: Sure. Well, our computer science…
KM: The Lawson building is very nice.

JV: Yes, the Richard and Patricia Lawson Building, named after really a computer pioneer Richard Lawson, who founded Lawson software, one of our alums, is home now to the country’s first computer science department. Our department in the early sixties was the very first program to establish a graduate degree. Over the years, the facilities have just not kept up, so now it’s a state of the art facility, and it’s really a wonderful department. It’s made a big difference. That was a $22 million structure, and the new wing in Wayne and Mary Hochmeyer Hall of Structural Biology is about halfway built now. That’s a $33 million structure that is going to house what we think is the world’s leading group in structural biology, which is really a key role. They are the first step, along with veterinary medicine, in solving the issue of infectious disease, where you may detect a virus in a small animal, but then the issue is how do you design a drug to combat that virus? And, they’re experts — Michael Rossmann we hope will be our next Nobel Peace prize winner — at looking at a host of macromolecules. But let’s take viruses as an example. If you can understand the geometry of a virus, you learn a tremendous amount, because in biology, form or geometry determines function or how something works. In viruses, if you want to upset the mechanism of a virus, then if you know the geometry you might be able to design drugs that bind to it in just the right way so that they can block some key mechanism and therefore stop the disease. That’s the approach of this group, and from that the drug designers and chemists and medicinal chemists can then take their cues and design these drugs. We can then manufacture them at the Chao Center in
Discovery Park, deploy them in countries that are suffering from diseases like Dengue Fever and West Nile. In fact, I’m wearing a tie that depicts the structure of the West Nile virus, and this is a Purdue tie. It describes Richard Kuhn’s group. He’s a department head, and his group determined the structure. There is a company in California that markets ties, and we now have three ties with them that depict various science themes, and a portion of the profits come back to Purdue. So, we give that back to the group. So, if you’re out there in the audience and you want a great tie, then please go on the web. It’s great for Father’s Day and holidays.

KM: Do you participate in your alumni associations at all? At Notre Dame?

JV: Oh yes.

KM: I usually ask that question to the researchers. Many of them hold offices or regional. Would you care to comment?

JV: Oh, I’m, especially with two kids, one having just finished and the other still at Notre Dame, yes I’m certainly and very much involved in those activities.

KM: And for the Purdue–Notre Dame, it’s on the 50 yard line, back and forth there? [laughs]

JV: Yea, well, I try to be silent during those games. But, really a whole new world opened up when I became dean at Purdue because I became involved in alumni activities from the Purdue side, and it’s really just a tremendous opportunity, and it’s a lot of fun, because as dean you hear a lot of complaints or budget issues,
they’re not the greatest thing to deal with all the time. But, when you talk to really successful alums, they’re just so happy about everything Purdue has done for them. They want to just enjoy the time with you. They want to hear about what’s going on, and then they contribute, and they make a real difference for future generations like Richard and Pat Lawson or Wayne and Mary Hochmeyer. That makes a tremendous difference. I was just meeting with Bill Miller at Stanford, former Stanford provost and vice president for research and then Stanford Research Institute president, tremendous entrepreneur. He donated three endowed professorships to our college. We just filled one. They have really a remarkable impact on what we as an institution can do. We couldn’t do it without them, so it’s a real treat to interact with them.

KM: Alumni play a role. They come back for homecoming, they want to know, and they’re always so pleased too for someone that’s been here for a long time to remember them as a student. It’s very rewarding.

JV: It is.

KM: A couple of your rewards and honors. You were a Guggenheim Foundation Fellow, and you’re a fellow of ASM?

JV: ACM, the Association for Computing Machinery, and the IEEE, which is a similar group.

KM: Those are very nice honors.
JV: Yes, I’m especially proud of being a Guggenheim Fellow. This was a part of my first sabbatical. I spent both sabbatical years in France, and it’s been a great experience for my family and my kids. I didn’t have the opportunity to study abroad as a student. I could have if I wanted to. It just wasn’t on the radar screen, but it’s so important now that they get that international experience, all three kids now. My daughter Jillian did study abroad in Australia, and last year after graduation, she spent a year service-teaching, teaching English in a Parisian high school in France. So, it’s just a great experience. She got to live with my sister who’s been in France for almost 30 years. My son is about to go to Cairo for a semester, and my daughter Audrey was in France for seven weeks in a little town in Brittany. So, I’m really proud to see that they’ve taken and appreciate those kinds of perspectives.

KM: Those are great experiences. How about a favorite memory of Purdue? Do you have one of those you’d like to share?

JV: Well, I think my favorite memory is the opportunities to just talk about and brag about all the wonderful faculty and the things that our staff, students, and faculty do in the college. There are what’s called president forums every month. There is usually a guest speaker, and in February of 2004 and then again in March of 2007, I was asked to talk on behalf of the College of Science, and in the process of putting that together and then actually delivering it and sharing it with the Purdue community, it really brought back the amazing talent in the college and all the great things that have happened: Now we have this dual focus, not just on
disciplinary excellence, but also multidisciplinary perspectives. We’ve got the new curriculum. We’re really recognizing in a more effective way what our people do, and we’re hiring even better and better people each year through, I think, a better process of hiring. It’s just exciting to talk about those things and share the breakthroughs our faculty have made. That’s been just a lot of fun. And this whole process of strategic planning, and just having these retreats where faculty kind of get excited just learning about all these activities, those are very, very rewarding.

KM: Do you have an outstanding event in your life that you’d like to share with us?

JV: Oh, well I think it would really be about my family… meeting my wife Sharon and then getting married. Then, our three kids, all born in Providence. I can still remember very sharply each of those days. I even…my middle son was born kind of early in the morning. That was probably the only day I’ve actually woken up early, and I wasn’t quite sure why I woke up. I just got up and showered, and then when I was done, my wife said, “Oh, I think I have to go to the hospital.” So, those events are just the most important to me.

KM: In closing, any comment for the researchers, or any closing comments you’d like to share?

JV: I’m just really excited about the College of Science and all the great things that the college does. Well, our analytical chemistry group is second in the nation. It’s going to be number one again, like it was in the mid-nineties, before long. Our structural biology group is probably the best anywhere. Our information security
center, CERIAS, is the best around. Statistics is a top-10 department. Computer science is ranked at either 9 or 19, depending on who's ranking, computational science is ranked number 5, and math and chemistry are highly ranked. It's really just a wonderful place. A lot of great things are happening. It's kind of a bittersweet time for me because I just got the opportunity to go to Texas A&M as provost. It's really an exciting time, but at the same time it's hard to leave Purdue. But I look forward to Purdue really doing wonderful things as a university, with the College of Science playing a really important integrative role in all of that.

KM: Right. Thank you, Dean Vitter. This concludes it. Thank you very much. My pleasure.

JV: Katherine, thanks. It was my pleasure.

End of Interview